Exercise 1 - Variables (*)

- 1. quantitative, continuous
 - qualitative, nominal
 - quantitative, discrete
 - qualitative, ordinal
 - qualitative, nominal
 - qualitative, ordinal
 - quantitative, discrete
 - quantitative, discrete
 - qualitative, nominal
 - quantitative, discrete

Exercise 2 - Relative change and percentages (*)

- 1. The absolute change of Alice income is \$5,000. The relative change is $\frac{100}{7} \approx 14.3\%$
- 2. Alice's bonus is \$3,500
- 3. The annual automatic pay was last year \$1,500, being 4.3% of Alice's income. The annual automatic pay is in percentages the same each year. So, Alice's income is now \$40,000 * 1.043 = \$41,714
- 4. Alice's income is now \$41,714 * 0.85 = \$35,457
- 5. Alice should ask an increase by $\frac{\$41,714-\$35,457}{\$35,457} = 17.6\%$

Exercise 3 - Relative change and percentages (**)

- 1. The first pair of jeans costs \$42, the second \$45. The first one is cheaper.
- 2. The final price of the pair of jeans is 150 * 0.8 * 0.9 = \$108. Bob unfortunately cannot afford this pair of jeans.
- 3. The initial price was $\frac{80}{1-0.3} = 114.30$
- 4. The initial price of the t-shirt was $\frac{20}{0.8} = 25$ \$. Bob saved (114.30 80) + (25 20) =\$39.29

Exercise 4 - Average growth rate (***)

1. cf. Table

Days	Abs. change	Rel. change in $\%$
Tuesday	1	+20%
Wednesday	-2	-33.3%
Thursday	3	+75%
Friday	2	28.6%
Saturday	-1	-11.1%

Table 1: Absolute change and relative change of Santiago and Manolin's catch

2. The aggregate change (in percentages) for the whole week is

$$\left(\frac{6}{5} * \frac{2}{3} * \frac{7}{4} * \frac{9}{7} * \frac{8}{9} - 1\right) * 100 = 60\%$$

3.

$$\left(\sqrt{\left(1.75 * \frac{9}{7}\right)} - 1\right) * 100 = 50\%$$

4. The average growth rate for the whole week is (we use the result of question 2.) :

$$\left(1.6^{\frac{1}{5}} - 1\right) * 100 = 9.86\%$$