Statistical Reasoning Week 9

Sciences Po - Louis de Charsonville

Spring 2018

Sciences Po - Louis de Charsonville

Research Paper

Single Regression

Multiple Regression Standard Multiple Regression Regression with categorical variables Detailed Example - Radio and the rise of Nazis (QJE 2015)

Research advices

Research Paper

Timeline

1 st draft	Done
No Class	3 April
2 nd draft	10 April
Week 11	17 April
Final draft	24 April

Single Regression

Simple regression by OLS

 $Y = \alpha + \beta X + \epsilon$ $\beta = \frac{Cov(X, Y)}{Var_X}$ $\alpha = \bar{Y} - \beta \bar{X}$

- β is the estimate the variation in Y predicted by a change in one unit of X.
- ► The *p*-value test whether the coefficient is significantly different from 0.
- R² measures the goodness of fit and is the share of the variance of Y explain by the model.

Are CEO's wages correlated with sales?

Are CEO's wages correlated with sales?

Model :

 $Wages = \alpha + \beta Sales + \epsilon$

- ▶ in Stata :
 - Plot the data tw (sc lsalary lsales) (lfit lsalary lsales)
 Regression reg lsalary lsales

. reg lsalary lsales

Source	SS	df	MS	Number of ob)s =	209
				- F(1, 207)	=	55.30
Model	14.0661688	1	14.0661688	Prob > F	=	0.0000
Residual	52.6559944	207	.254376785	R-squared	=	0.2108
				- Adj R-square	ed =	0.2070
Total	66.7221632	208	.320779631	Root MSE	=	.50436
	•					
lsalary	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
lsales	.2566717	.0345167	7.44	0.000 .1886 0.000 4.253	5224	.3247209

Hoes does the type of the firm impact the results?

reg lsalary lsales if finance ==0

Source	55	df	MS	Numbe	r of ob	s =	163
Model Residual	12.4512191 42.5750911	1 161	12.451219 .2644415	 F(1, Prob R-squ 	161) > F ared	= =	47.08 0.0000 0.2263
Total	55.0263102	162	.33966858	— Adj H 2 Root	MSE MSE	a = =	0.2215
lsalary	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
lsales _cons	.2584878 4.782085	.0376703 .3141753	6.86 15.22	0.000 0.000	.1840 4.161	962 649	.3328795 5.402521

reg lsalary lsales if finance ==1

Source	SS	d f	MS	Numbe	r of ob	s =	46
Model Residual	1.41543601 9.60192044	1 44	1.41543601 .218225465	Prob R-squa	+4) > F ared	=	0.0144 0.1285
Total	11.0173565	45	.244830143	Root R	-square 1SE	a =	.46715
lsalary	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
lsales _cons	.229666 5.136137	.0901788 .7576192	2.55 6.78	0.014 0.000	.0479 3.609	226 256	.4114093 6.663018

Multiple Regression

- First step into Multivariate statistics
- ► 1 dependent variable Y (should be continuous), multiple regressors X₁, X₂,...X_k (can be quantitative, ordinal)
- Can control the effect of X_i : disentangling effects of multiple independent variables.
- Determine which variable is the strongest predictor

Multiple Linear Regression - Model

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \epsilon$$

Partial derivatives

- Each coefficient is calculated by holding all others constant (ceteris paribus)
- It represents net effects (that's why control variables are so important).

Least squares

The model is still optimized by minimizing the squared error terms

Warning

The model is still assuming *linear*, additive relationships.

Sciences Po - Louis de Charsonville

Statistical Reasoning

Does skipping lectures affect your educational attainment?

- Dependent Variable : GPA score after graduation
- Independent Variable : Average nb of skipped lectures per week
- Controls :
 - High School GPA
 - Parents are college graduate
 - Has a personal computer
 - Gender
 - Age
 - Weekly alcohol consumption

Stata Without controls reg colGPA skipper

. reg colGPA skipped, beta

Source	SS	d f	MS	Number of obs	=	141
Model Residual	1.33028272 18.0758167	1 139	1.33028272 .130041847	- F(1, 139) Prob > F R-squared Adi R-squared	= = =	0.0017
Total	19.4060994	140	.138614996	6 Root MSE	=	.36061
colGPA	Coef.	Std. Err.	t	P> t		Beta
skipped _cons	0895215 3.153084	.0279896 .0427751	-3.20 73.71	0.002 0.000		26182

2/3

Stata

With controls

reg colGPA skipped hsGPA PC male age alcohol, beta

Source	SS	df	MS	Number of obs	=	141
Model Residual	5.26849772 14.1376017	6 134	.878082954	- F(6, 134) Prob > F R-squared Adi R-squared	= = =	8.32 0.0000 0.2715 0.2389
Total	19.4060994	140	.138614996	6 Root MSE	=	.32481
colGPA	Coef.	Std. Err.	t	P> t		Beta
skipped hsGPA PC male age alcohol _cons	0765573 .4910405 .1345645 .018962 .0262554 .0309068 .7980128	.0276927 .0911268 .0575223 .0598633 .0226128 .0222811 .6400507	-2.76 5.39 2.34 0.32 1.16 1.39 1.25	0.007 0.000 0.021 0.752 0.248 0.168 0.168	-	.2239042 .4219506 .1774824 .0255246 .0896358 .1141188

3/3

Single coefficient

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3(0) + \epsilon$$
$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3(1) + \epsilon$$

The omitted category $X_3 = 0$ is called the **reference category** and is part of the **baseline model** $Y = \alpha$, for which all coefficients are null.

Example

 $Income = \alpha + \beta_1 age + \beta_2 education + 0.male + \epsilon$ $Income = \alpha + \beta_1 age + \beta_2 education + 1.female + \epsilon$

Categorical variables

Categorical variables can be used as **dummies**, e.g. binary recodes of each category that are tested agains a **reference category** to provide coefficients for the net effect of each category.

Stata

reg colGPA skipped hsGPA i.grad, beta

Source	SS	d f	MS	Number of obs	=	141
Model Residual	4.39380249 15.012297	5 135	.878760499	- F(5, 135) Prob > F R-squared	=	0.0000
Total	19.4060994	140	.138614996	Root MSE	=	.33347
colGPA	Coef.	Std. Err.	t	P> t		Beta
skipped hsGPA	0795378 .4429045	.0261501 .0910527	-3.04 4.86	0.003 0.000	-	.2326212 .3805873
grad 2 3	.1133509 0290666	.1988868	0.57 -0.47	0.570 0.638	_	.0440907

.1035004

3241498

Sciences Po - Louis de Charsonville

4

cons

-.0096835

1.648639

5.09

0.926

0.000

-.0075515

Radio and the Rise of the Nazis in Prewar Germany (QJE 2015) Adena, Enikolopov, Petrova, Santarosa, and Ekaterina Zhuravskaya

Motivation

- Dictators often come to power through a democratic process rather than military coups
 - Examples : Mugabe, Lukashenko, Chavez, Hitler
- How do future dictators persuade voters to support them?
- When is propaganda more and less effective?

Slides from material of E.Zhuravskaya

Main messages

- Whether future dictators or pro-democratic forces have control over mass media and whether extremist speech is allowed plays a role in preservation or collapse of immature democracies
- Propaganda can be very effective in maintaining popular support for dictator's policies, but it can also backfire and lead to lower support for the dictator
 - depending on listeners predisposition to the message

Why Nazi Germany?

- The rise of the Third Reich is the most prominent example of a collapse of democracy without a military coup.
 - ► The Nazis won the March 1933 election (Nazi party got 43.9% of popular vote +8% for DNVP, their coalition partner); 18 days later parliament passed the Enabling Act.
- The Nazis themselves strongly believed in media power.
 - Aug 1933 : J.Goebbels "It would not have been possible for us to take power or to use it in the ways we have without the radio."

5/9

Radio became more and more political

Sciences Po - Louis de Charsonville

Statistical Reasoning

6/9

Access to radio was unequal

7/9

Radio expanded quickly

Cross-section on first difference

 $\Delta y_{it} = \beta_{0t} + \beta_{1t} Radio Exposure_{it} + \beta_{2t} X_{it} + \phi_p + \epsilon_t$

With :

- y_{it} share of votes for the Nazis
- RadioExposure_{it} signal strength
- X_{it} a vector of controls
 - Determinants of transmitter location
 - Socio-economic controls : census variables, including shares of Jews and Catholics, blue- and white-collar workers, WWI participation, property tax, welfare recipients
 - Voting preferences in 1924
 - Robust to controlling for newspapers, cinemas, and location of Hitler's speeches
- ϕ_p provinces fixed effects

Output

Panel A. Reduced form estimation

	Change in Vote Share of the Nazi Party Since Previous Elections					
Election dates:	Sep	1930	Mar 1933			
	(Change from May 1928)		(Change from Nov 1932)			
-	()	(2)	(3)	(4)		
Radio signal strength	-0.061***		0.045**			
	[0.022]		[0.020]			
Radio Signal Strength, non-linear transformation		-0.217***		0.128*		
		[0.071]		[0.071]		
Region fixed effects	Yes	Yes	Yes	Yes		
Baseline controls	Yes	Yes	Yes	Yes		
Observations	958	958	918	918		

Research advices

- Total number of observations
- R-Squared
- *p*-value of the overall model (*F*-statistic)

Describe the coefficient fof your IVs

- ceteris paribus, what is the effect of x on y
- sign of the coefficient
- p-value of the coefficient
- Interpret the standardized coefficient, β, in order to compare the magnitude of each independent variable.

\triangle Only the magnitude of the betas can be compared between independent variables, not the coefficients

Summarizing a Multiple Linear Regression Model

"We ran a multiple regression analysis to examine the determinants of perception of the environment in France. Four predictors were included in the model : education, social class, trust in government, and age. Together, these factors account for 12% of the variance in environmental perceptions (*R*- Squared=0.12). All the variables except social class are significant (the p-values associated to the coefficients are lower than 0.05). Education and trust in government are the strongest predictors (beta=0.20) and are positively associated with environmental perceptions. Age is negatively related to environmental perceptions."

Describe the Relationship

- Both variables are continuous
 sc, pwcorr
- If IV is a dummy : compare means bysort, ttest
- Both variables are categorical Cross-tabulations, Cramer's V

Signifiance

• Look at *p*-values of each kind of test (ttest, χ_2)

- Cramer's V and Pearson's R are not statistical tests, but tell you the strength of the association;
- Chi-2 and t-tests are statistical tests : they tell you whether the relationship is significant or not;
- The pwcorr command with option sig or star provides both : Pearson's R and significance of the correlation;
- In a regression model, the R-squared tells you the explanatory power of the predictor variables;
- ► The *p*-values associated to the coefficients in the regression model tell you the statistical signifiance of the predictor.