Quantitative Tools - Level 2 - Fall 2017
Louis de Charsonville

Lecture 6

Probability (2/2)*

1 Random variables, Expected Value and Variance

1.1 Random variable

Definition 1.1. Random variable

Suppose we have an experiment whose outcome depends on chance. We called the outcome of the experiment a
random variable, usually denoted by the roman letter X. If the sample space of the experiment is either finite
or countably infinite!, the random variable is said to be discrete.

Example 1.1. A die is rolled once. The sample space, §2, of the experiment is:
0 =1{1,2,3,4,5,6}

Let X be the outcome of this experiment. We can compute the following probability:

1
P(X<3) ==
2
Definition 1.2. Uniform distribution
The uniform distribution on a sample space € containing n elements is the function m defined by:

1
Yw e Q, m(w) = -

1.2 Expected value

So far, we have studied the computation of the probability of a single event but usually, we are usually interested
in descriptive quantities such as the average, the median or the standard-deviation.

Definition 1.3. Expected value
Let X be a discrete random variable with a sample space 2 and distribution function m(z). The expected value,
denoted F(X), is defined by:
E(X) = xm(z)
€

We often refer to the expected value as the mean?.

*The notes draws extensively on the Grinstead and Snell’s ” Introduction to Probability”, 2006, which is freely accessible on the
world wide web.

LA set is said to be countably infinite if one can count set’s elements, in other words, that for each item in the set, there is an
natural number associated. If you can’t think of what could be an uncoutable infinite set, think of the set of real numbers between
0 and 1.

2The sum might be equal to the infinite. In such a case, we say that the sum does not converge and X does not have an expected
value.
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Example 1.2. A dice is rolled. If the dice falls on an odd number, we win an amount equal to the number,
otherwise we loose the amount equal to the number. Let X the payout from the roll of dice, then Q =
{-6,-4,-2,1,3,5}.

E(X)=) zxP(X =ux)
e
1
= (6-4-2+1+3+5)
1
2

Theorem 1.1. Sum of two random variables
Let X, Y be two random varibles with finite expected values. Then

EX+Y)=EX)+E(Y)
Properties 1.1. Let X be a random variable, and ¢ any constant, then
E(cX) =cE(X)

Theorem 1.2. Product of two independent random variables
Let X, Y be two independent random varibles with finite expected values. Then:

E(XY)=E(X)E(Y)

Example 1.3. Link between expected value and average value We flip a coin. If it is a head, we earn
€1, if it is a tail, we loose €1 . The expected value is:
1 1
EX)=—1x=-+4+1x%x=
(X) = —lxg lxg
=0

We simulate 200 games where the coin is flipped 1000 times per game. Figure 1 is the plot of the outcome.
Each blue line is one of the 200 games, the z-azis is the number of tosses and the red line the average of the
blue lines.
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Figure 1: 200 simulations of coin flipped 1000 times

Example 1.4. St Petersburg Paradox
Let’s consider the following game: a coin is flipped n times until a heads comes out. The player earns 2. How
much should the player be willing too pay 7
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Answer:
The player should play the game if the expected value is positive. Let’s denote @) the price of the game. We
want:

Q

Q= E(X)

Q=) P(X=n)xX
n=0

What is the probability that a heads comes out after n flips ? It is the probability that the coin falls on tail
n — 1 times which is 21%1 and that the coin then falls on head:

Then:
+oo 1
Q= Z 272n
n=0
= Z 1
n=0

1.3 Variance

The expected value measures the average outcome but another interesting metrics considering probability is by
how much the outcome is likely to deviate from the average value. This is what variance measure.

Definition 1.4. Variance
Let X be a random variable, then the variance of X, denoted by V(X) or O'g(, is:

Definition 1.5. Standard deviation
The standard deviation of X, denoted ox, is ox = 1/V(X)

Example 1.5. Let’s compute the variance in the setup of example 1.2
V(X)=E(X?) - E(X)?

1 1
= (36 +16+4+149+25) — -

4
91

6 4

1

12

Properties 1.2. For any X a random variable, and ¢ a constant:
V(eX) = AV (X)
Properties 1.3. For any X.Y two independent random variables®, we have:
VIX+Y)=V(X)+V(Y)

Definition 1.6. Covariance
Let X and Y be two random variables. Then the covariance of X and Y, denoted by Cov(X,Y) is:

Cov(X,Y) = E((X — E(X))(Y — E(Y)))

Properties 1.4. Let X and Y two independent random variables. Then Cov(X,Y) = 0.

3This property can be generalized for n independent random variables.
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Proof
We use the expected value of the product of two independent random variables is the product if their expected
values, i.e. E(XY)=E(X)E(Y).

Properties 1.5. Sum of two random variables
For any X,Y two random variables, we have:

V(X 4Y)=V(X)+V(Y)=2Cou(X,Y)

2 Discrete probability distributions

In this section, we describe the discrete probability distributions that occur the most often in applied statistics.

2.1 Uniform distribution

The uniform distribution is the distribution whereby a finite number of values are equally likely to be observed.
For instance, a dice roll or a flipped coin follows uniform distribution. If n is the number of possible outcomes,
and w1y, ...,w, the outcomes, then:

1
Yw; € {wl,...,wn}, P(X:wi) —
n

The discrete uniform distribution itself is non-parametric (i.e. does not depend of exogenous parameters).

However, it is convenient to represent its values by all integers in an interval [a, ..., b].
The expected value and the variance write:

a+b
n
(b—a+1)2-1
12

2.2 Binomial distribution

Definition 2.1. Bernoulli Trial
A bernoulli trial is a random experiment with ezactly two possible outcomes. One is usually named ”success”
and occurs with probability p. It is named after Jacob Bernoulli, a Swiss mathematician.

Definition 2.2. Binomial Distribution
The binomial distribution, with parameters {k,n, p}, is the probability that an event occurs k times after n of
Bernoulli trial with probability p.

b(n,p, k) = (Z) pE(1—p)nt
Example 2.1. The binomial distribution describes the number & of heads after n tosses.
Properties 2.1. Expected value and variance
- The expected value of a binomial distribution of parameters,n et p, (B)(n,p) is E(X) = np.

- The variance of (B)(n,p) is np(1 — p.

2.3 Poisson distribution

The Poisson distribution is one of the most famous distribution. It is mostly used to model modelling the number
of times an event occurs in an interval of time or space. Notably, it is used to model the frequency of rare events,
like claim modelling by insurance companies, the number of airplane accidents, or waiting times at a bus station.


http://freakonometrics.hypotheses.org/16093
https://stats.stackexchange.com/questions/122722/please-explain-the-waiting-paradox
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2.3.1 Intuition

Suppose? that we have a situation in which a certain kind of occurrence happens at random over a period of
time. For example, the occurrences that we are interested in might be incoming telephone calls to a police
station in a large city. We assume that the average rate, i.e. the average number of occurrences per minute,
is a constant, denoted A. Our next assumption is that the number of occurrences in two non-overlapping time
intervals are independent. In our example, this means that the events that there are j calls between 5:00 and
5:15 P.M. and k calls between 6:00 and 6:15 P.M. on the same day are independent.

We can use the binomial distribution to model this situation. We imagine that a given time interval is
broken up into n subintervals of equal length. If the subin- tervals are sufficiently short, we can assume that
two or more occurrences happen in one subinterval with a probability which is negligible in comparison with
the probability of at most one occurrence. Thus, in each subinterval, we are assuming that there is either 0 or
1 occurrence. This means that the sequence of subintervals can be thought of as a sequence of Bernoulli trials,
with a success corresponding to an occurrence in the subinterval.

To decide upon the proper value of p, the probability of an occurrence in a given subinterval, we reason as
follows. On the average, there are At occurrences in a time interval of length ¢. If this time interval is divided
into n subintervals, then we would expect, using the Bernoulli trials interpretation, that there should be np
occurrences. Thus, we want:

At =np
At
p=—
n

We now consider the number of occurences in a given time interval, X. We want to calculate the distribution
of X. To ease calculations, let’s assume that ¢ = 1.

We want to compute P(X = k). We are going to do it by induction. First, using the binomial distribution, we
know that:

P(X =0) = b(n,p,0)
=(1-p)"

A n
n
~ ¢~ when n is big

Then:

k(1 —p)

A—(k=1)p
=——— 2 b(n,pk—1

W1 —p) (n,p )

A Lo
~ z b(n,p,k — 1) when n is big

When n is big and therefore p is small:

)\k
P(X =k)~ Ze

The above distribution is the Poisson distribution. The Poisson distribution is an approximation to the binomial
distribution when the parameter n are large, and p is small.

Definition 2.3. Poisson distribution
An event occur A times in an interval. We call A the event-rate. The probability of observing k events in an
interval is given by:

k

P(X =k)= %e*A

4Example stolen from Chapter 5, Distribution and Densities, Grinstead and Snell’s Introduction to Probability, 2009.
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Figure 2: Poisson processes

Properties 2.2. Expected value
The expected value of a Poisson distribution of parameter A, denoted P(k), is .

Properties 2.3. Variance
The variance of a Poisson distribution of parameter lambda, denoted P(k), is .

2.4 Hypergeometric distribution

The hypergeometric distribution is used to model draws without replacement (whereas the geometric dis-
tribution models draws with replacement).

Definition 2.4. Hypergeometric distribution

Suppose that we have a set of N balls, of which p % are red. We choose n of these balls without replacement
and define k the number of red balls among our sample. The probability to observe k red balls in a sample of
n draws from a population of size N, denoted H(N,n, k):

H(N,n, k) = (J\’;p) (]\;__]Zp>

N
n
Properties 2.4. Expected value
The expected value of an hypergeometric distribution of parameter N, n, k:

E(X)y(Npk) =n*D

Properties 2.5. Variance
The variance of an hypergeometric distribution of parameter N, n, k:

np(1 = p)(N —n)

V(X)H(N,n,k) = N —1

3 Continuous probability distributions

3.1 Continuous random variables

So far we have studied discrete random variables, i.e. the sample space was a discrete set. We shall now study
continuous random variables for which the sample space is real-valued, which means the sample space is an
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uncountable set.

Example 3.1. Spinner

We begin by constructing a spinner, which consists of a circle of unit circumference and a pointer. We pick a
point on the circle and label it 0, and then label every other point on the circle with the distance, denoted =,
from 0 to that point, measured counterclockwise. The experiment consists of spinning the pointer and recording
the label of the point at the tip of the pointer. We let the random variable X denote the value of this outcome.
The sample space is the interval [0, 1], which is uncountable.

A consequence of the sample space being uncountable is that:

YVweQ P(X=w)=0
on the contrary:
PO<X<1)=1

since the spinner comes to rest somewhere in the circle.

We also have : 1
PO<X < 5) = P(

More generally:

Definition 3.1. Density function
Let X be a continuous real-valued random variable. A density function for X is a real-valued function f which
satisfies:

P(aﬁXﬁb)—/bf(x)dx

Definition 3.2. Cumulative distribution function (CDF)
The cumulative distribution function of a real-valued random variable X is the probability that X will take a
value less than or equal to x. We usually denote it Fix(x):

Fx(z) = P(X < 2)
= /_ Fx(t)dt

Definition 3.3. Expected value
Let X be real-valued random variable. We say that X has an expected value if ffoo tfx(t)dt converges. We
denote the expected value, E(X):

Bx) = [ " bt

— 00

Definition 3.4. Variance
The variance of a random variable X, when it exists, is:

V(X) = E((X - B(X)?)

3.2 Normal distribution

The normal distribution is the most important density function.

Definition 3.5. Normal density
The normal density function with parameters p and o is defined as:

We usually denote the normal distribution N (u, o) and say that a random variable follows a normal distri-
bution X ~ N (u,0).
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Figure 3: Normal densities

Properties 3.1. Expected value and variance

- The expected value of a normal distribution N (p, o) is p.

- The expected value of a normal distribution N (i, o) is o2.

Definition 3.6. Standard normal distribution The standard normal distribution is the normal distribution
with parameters 4 =0 and o = 1.

4 Fundamental theorem of probabilities

4.1 Law of Large numbers

Intuition Sometimes coined as the law of averages, the law of large numbers states the average of the results
obtained from a large number of trials is close to the expected value. It is to be related with the frequency
interpretation of probability: the probability of a certain outcome can be seen as the frequency with which that
outcome occurs in the long run.

Theorem 4.1. Markov Inequality
Let X be a discrete random variable with expected value p = E(X), and let € j 0 be any positive real number.
Then:

E(X])

€

P(X|>¢) < 1)

Theorem 4.2. Chebyshev Inequality
Let X be a discrete random variable with expected value p = E(X), and let € j, 0 be any positive real number.

Then
V(X
2

~—

P(X —pul>¢) <

Theorem 4.3. Law of Large Numbers
Let X1, Xs,..., X, be an independent trials process, with finite expected value = E(X;) Vj € [1,n] and finite
variance p = V(X;) ¥j € [1,n]. We denote S,, = X7 + X3+ --- + X,,. Then Ve > 0:

Sn
P(|——pulz€ ——0
n n—00

And equivalently:
S,
P p <) ——1

n—>00
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4.2 Central Limit Theorem

The second fundamental theorem of probability is the Central Limit Theorem. This theorem says that if S, is
the sum of n mutually independent random variables, then the distribution function of S, is well-approximated
by a certain type of continuous function known as a normal density function.

Theorem 4.4. Central Limit Theorem
Let (X,)n>1, a sequence of n independent and indentically distributed random variables. We denote the
standardized sum S}, by :

Z:‘L:l Xi o
* n
KT
Then:
Sy T> N(0,1) (2)

Application to statistics The central limit theorem is widely used in statistics to compute interval of
confidence, p-values and other statistics of interests.
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